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TORSION-FREE COVERS II 

BY 

MARK L. TEPLY 

ABSTRACT 

This paper continues the study of the existence of torsion-free covers with 
respect to a faithful hereditary torsion theory (~, 5) of left modules over a ring 
R with unity. If the filter of left ideals associated with (~, 5) has a cofinal subset 
of finitely generated left ideals, then every left R-module has a torsion-free 
cover. An example is given to illustrate how this result generalizes all previously 
known existence theorems for torsion-free covers. 

In this note R denotes a ring with unity, and all modules are unital left 

R -modules. 

Let (~, 5)  be a hereditary torsion theory of R-modules.  (See [5, 6,7, 8] for 

definitions and properties.) The class ~ of torsionfree modules is closed under 

taking submodules, injective envelopes, and direct sums. (~, 5)  is called faithful 

if R E 5. Associated with (~ ,~ )  is a topologizing and idempotent  filter 

F(~) = {I I R / I  E ~} of left ideals of R. An epimorphism ~ :  M'---~ M is called an 

~-precover  of M if it has the following properties: 

(i) M ' E ~ ;  

(ii) for each homomorphism ~b:F--*M with F E ~ ,  there exists a 

homomorphism f:  F---~ M'  such that ~ o f  = ~b. 

If F E 5, a submodule N of F is said to be pure in F if and only if F / N  ~ q~. An 

~-precover  ~ :  M'----~ M is called an J -cover  of M if ker �9 contains no nonzero 

pure submodules of M'.  If every module has an J-cover ,  ( ~ , 5 )  is said to be 

universally covering. 

J-covers  were first defined by Enochs [3] and shown to exist for the usual 

torsion theory over an integral domain. These results were extended to perfect 

torsion theories by Banaschewski [1]. Teply [8] showed that faithful hereditary 

torsion theories (~, 5), for which the direct sum of injective modules in ~ is 

injective, are universally covering. The existence and properties of covers is 
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further discussed by Enochs [4] and by Golan and Teply [6]. Finally, Cheatham 

[2] characterizes the left nonsingular rings for which the singular (Goldie) torsion 

theory is universally covering. 

The main theorem of this note generalizes all of the above results. An 

elementary example is provided to illustrate this generalization. 

Before stating the main theorem, we need one preliminary result. 

LEMMA. Let (~, q~) be a faithful hereditary torsion theory such that F(~) has a 

cofinal subset of finitely generated left ideals, and let M be an injective module. 
�9 : M'---~ M is an ~-precover if and only if M'  E ~ and, for each injective E ~ 
and each ~b": E ~ M such that ker ~b" contains no nonzero pure submodules orE, 

there exists f ':  E --~ M' such that Xttof ' = ~b". 

PROOF. The "only if" part is trivial; so we prove the "if"  part. Suppose that 

F E ~ and ~b: F--* M. By [8, lemma 2.1 (3)], the union of pure submodules of F 

in ker ~b is pure in F. So by Zorn's lemma, there exists a pure submodule P 

maximal among the pure submodules of F contained in ker th. Hence there exists 

cb':F/P--~M such that ~b=qb'or/, where 7?:F---~F/P is the natural 

homomorphism. By [8, prop. 2.1 (2)], ker~b' contains no nonzero pure sub- 

modules of F/P. 
Since M is injective qb' extends to ~b": E(F')---~M, where F ' =  F/P. If ker ~b" 

contains a pure submodule H of E(F'), then ( F ' +  H ) / H  C E(F ' ) /H  E ~; so 

F'/(F' O H)  E ~ and F '  M H C_ ker d~" n F '  = ker d~'. Hence F' n H = 0. Since 

F '  is essential in E(F'), H = 0 .  Now by the hypothesis, there exists 

f ' :E(F')-->M' such that ~ o f , =  ~b". Hence r = ~b'o r/ = 4,"o r/ =~of'o~?. By 

setting f = f 'o ~7, we see that ~ :  M'--* M is an ~-precover. 

NOTATION. If f : M - - ~ N  is a homomorphism and if X_C M, then f I X  

denotes the restriction of f to X. 

THEOREM. If (~, ~) is a faithful hereditary torsion theory such that F(~) has a 

cofinal subset of finitely generated left ideals, then (~, ~) is universally covering. 

PROOF. To show that every module has an ~-precover, it is sufficient to show 

that each injective module M has an ~-precover by [8, lemma 2.2 (1)]. Thus we 

assume M is an injective module. 
Let {E~},~A be a set of representatives of the isomorphism classes of injective 

hulls of cyclic modules in ~. For each a E A and each g E Horn (E,, M), let E,s 

be a copy of E~. Define X=(~,~A((~g~HomtE~,M)E~g). For each k ~  
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Hom(E(X),M), let Xk be a copy of E(X). Let M ' =  OkEHom(EtX~.M~X~, and 

define ~ :  M'---~ M via ~ [ X k  = k for each k. We wish to show that ~ :  M'---, M is 

an 3-precover  for M. 

Since M'  E 3, the lemma implies that ~ :  M'---, M is an 3-precover  if ,  for any 

nonzero injective F E 3 and any d,: F ~ M such that ker d~ contains no nonzero 

pure submodules of F, there exists f :  F---~ M '  such that ~ o f  = ~b. Let ~ )~eFa  be 

a direct sum of injective hulls of nonzero cyclic modules such that E)~sF~ is 

essential in F. Define F ~ -  F~ (a,/3 E B )  if and only if there exists an 

isomorphism ~r~ : F~ ~ F~ such that (~b [ F~ ) = (~b [ F~) o zr~. It is easy to check 

that - is an equivalence relation on {F~}~EB. 

If a ~ / 3  and F~ ~ F~, then define G,,~ ={x-~'~f,(x)[xEF,,}. It is easy to 

check that G,~ is a submodule of F and that 0: G ~  --~ F~ : x - ~ (x)--~ rr,~ (x) is 

an isomorphism. But for x - 7r~ (x) E G~,  (4' [ G ~  ) (x - ~r,~ (x)) = 

'b ( x ) -  ~b (Tr~ (x)) = 0 by the definition of ~ .  Thus G ~  is an injective (and hence 

pure) submodule of F contained in ker ~b, which contradicts our assumption. 

Therefore,  each equivalence class of ~ has only one member.  

For each a E B, there exists an isomorphism 0~ : F~ ~ E~ for some /3 E A. 

Define f '  ~O~ : ~),,EBF~ ----~ X via F,~ ~ = ~ E a(60;~, f '  is a monomorphism since 

each equivalence class of ~ has only one member  F~ in it. Extend f '  to 

f":F---*E(X) by injectivity. Since E/)~aF, is essential in F, then f "  is a 

monomorphism. By the injectivity of M, choose a homomorphism g : E(K)---~ M 

such that g~ Finally, define f:F---~M' via f=jof , , ,  where j is the 

natural injection of X, into M'.  Then (~  o f)  (x) = ~0r(x))  = 

�9 (j(f"(x)) = (g of")(x) = 4~(x) for all x ~ F;  hence ~ o f  = ~b. Since R ~ 3,  then 

must be an epimorphism. Therefore,  ~ :  M'--~ M is an 3-precover  of M. 

The above proof shows that, if F (~ )  has a cofinal subset of finitely generated 

left ideals, then every injective module has an 3-precover.  Thus we now drop 

our assumption that M is injective; i.e. let M be any module, and let ~ :  M'--~ M 

be any 3-precover  of M. By [8, prop. 2.1 (3)], the union of a chain of pure 

submodules of M'  contained in ker �9 is pure in M'.  By Zorn's  lemma, there is a 

maximal pure submodule N among the set of pure submodules of F contained in 

k e r ~ .  By [8, lemma 2.2 (3)], the natural epimorphism Vtt:M'/N----~M is an 

3-precover  of M. If follows from [8, prop. 2.1 (2)] that kerff '  contains no nonzero 

pure submodules of M'/N; hence ~ :  M'/N---~M is an ~:-cover of M. 

EXAMPLE. Let A be a ring, and let I be a two-sided ideal of A such that 

I ~  A. Let R be the ring of all matrices of the form 
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A A / I  
0 A / I  )" 

Let F(~)  consist of all left ideals containing the finitely generated, idempotent, 

left ideal 

K_ I A A . )  
0 0 " 

Since K is also a right ideal of R, then F (~)  is a filter for a hereditary torsion 

theory, ~ consists of all modules annihilated by K, and R ~ ~. Hence the 

theorem implies that (~, 3)  is universally covering. 

If A is not left noetherian, then A has an infinite ascending chain {I~}7=1 of 

left ideals; so the left ideals of R of the form 

A.) 
0 A / I  

are an infinite ascending chain in R such that R/Jn E 3 for each n. By [8, theor. 

1.2], some direct sum of injective modules in 3 is not injective. Therefore, 

neither [8, theor. 2.4] nor [6, corol. 3.10] can be applied to show that (~, 3 )  is 

universally covering. 

If A is a left nonsingular ring and I is essential as a left ideal of A, then K is 

not ~-projective in the sense of [5]; so by [5, prop. 16.3], the localization functor 

associated with (~, 3 )  is not exact. Therefore, . (~,  ~)  is not perfect. (See [5, 

prop.17.1] or [7, theor. 13.1].) Thus neither the results of [1] nor [6, corol. 3.6] 

nor [6, theor. 3.13] apply to show that (~, 3)  is universally covering. 

If A is commutative semiprime ring and I is an essential maximal ideal of A, 

then some routine computation shows that the localization of R with respect to 

(~, 3)  is R itself; so [6, theor. 3.4] and [6, corol. 3.12] cannot be used in this 

situation. Moreover, if A is also non-noetherian, then [6, corol. 3.7] cannot be 

used to determine if (~, ~) is universally covering. 

Thus the theorem of this note shows that (~, ~)  is universally covering, but no 

previously known result can be used to determine if (~, 3)  is universally covering 

in this example. 
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